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The present work is devoted to the solution of some two-dimensional unsteady heat conduction problems for 

an infinite orthotropic cylinder with boundary conditions of the first- and second kind with a circular 

discontinuity line of temperature and specific heat flux. A solution of the two-dimensional unsteady heat 

conduction problem for an orthotropic cylinder is obtained with the aid of Laplace-Hankel transformations. 

The recent years a great deal of attention has been paid to investigation of heat transfer in different bodies 

having local heat sources of different configurations on their surfaces [1-22]. Solutions of steady-state heat 
conduction problems of this type have been analyzed in detail in previous fundamental studies [2, 3]. The 
increasing interest in unsteady heat conduction problems for finite and semifinite bodies is due to the fact that 

solutions of these problems can find use in various theoretical and practical applications. 
Of interest is the ease of the distribution of the temperature fields in cylindrical axisymmetrical regions 

when the boundary conditions over the surface (z -- 0) are determined as a Hankel integral for the Dirac delta 

function: 

r0+' J0 (PRO) (1) 
H R(6rO ) = l i r a  f rJ O(pr) q e ( r ) d r - ~ ,  

e-,O r 0 

where a unit density of heat flux is 

q, (r) = 

1 
, r o < r < - r o + e ,  :~ (2r 0 + e) 

O, r ~  [r O, r o + e ] .  

Formula (1) will be adopted to prescribe the unit density of heat flux at some point over a body surface. 

We now consider some physicomathematical models. 
Problem 1. It is necessary to solve a differential heat conduction problem of the form 

K a l _ _ [  OT(r ,  z ,  r)] O2T(r z Q 1 OT(r z , ~ )  O r + ' ' = - -  ' , 
r Or Or 3z 2 a z Or 

( 0 < r < R ,  0 < z < h ,  v > 0 )  

under the following initial 

T (r ,  z, 0 ) =  T O = const 

(1.1) 

(1.2) 

and boundary conditions (see Fig. 1) 
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Fig. 1. Schematic representation of combinations of boundary conditions 
(1.3)-(1.5) over the surface of an infinite orthotropic cylinder: 1) T(r, O, r) = 

Tv(r , T), 2) OT(R, z, v)/Or = --aR/2tr[T(R, z, V) -- TO], 3)OT(r, h, r ) /Oz  = 

--ah/2z[T(r ,  h, "t) - -  TO]. 

T (r , O, T) = T v ( r  , ~) (0 < r < R , z = O , T > 0 ) ,  (1.3) 

o_f_zT ] ah (1.4) 
= -  [T(r  h r ) -  ( 0 <  < R  z z=h ~ , , 7"01 _ r  , = h ,  r > 0 ) ,  

OT ] a R 
-~r r=R = ---~r [T ( R '  z ,  r ) - T 0 ]  (r = R , 0 < z < h ,  r > 0 ) ,  (1.5) 

O--~rT [ = 0  ( r = 0 ,  0 < z < h ,  ~ > 0 ) .  
r=0 

(1.6) 

A solution of the two-dimensional heat conduction problem (1.1)-(1.6) for a finite cylinder obtained with 

the aid of Laplace-Hankel transformations has the following form for the transform: 

TH (P , z ,  s) ToRJ 1 (pR) _ f rSo (pr) v (r , s) - dr • 
ps o 

where 

(1.7)  

R 7 TH(P,  z ,  s) = f rJ O (pr) T (r , z ,  r) exp ( -  sr) drdr ; 
o o 

Tv (r ,  s) = 7 Tv (r , T) exp ( -  s~) dT. 
0 

The inverse Hankel transform for (1.7) is as follows 

2 ~ Jo (Pn r) T .  (Pn, z ,  s) 
H-I  [TH (P, z,  s) l = T (r ,  z,  s) = ~ -~  . . . .  _~ . . . .  , 

n=l Jo (Pn R) + Jl (On R) 

where/z n = PnR are the roots of the characteristic equation 

/~nJz~n) - BiRJ0(Un) = 0 
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where Bin '= a R R / 2 r  is the Biot number.  

When the thermophysical  characteristics in the corresponding directions are equal, i.e., 2r --~.z --,~ and ar 

"* az ~ a (K a = 1), Eq. (1.7) represents a generalized solution of the two-dimensional uns teady heat conduction 

problem for an isotropic cylinder.  

As an example of a particular application of the initial solution (1.7), we shall solve a two-dimensional 

unsteady heat conduction problem for a finite orthotropic cyl inder  under  the following boundary  conditions. 

The  initial temperature  of the finite orthotropic cyl inder  is To. The  initial temperature  is assumed to be 

constant over the surface (z = h, 0 < r < R and r = R, 0 < z < h), i.e., T(r, h, r) -- T(R,  z, r) = TO. On the surface 

(z = 0, 0 < r < R) the function T(r, O, r) = Tv(r, 3) is prescribed. 

It is necessary to determine the two-dimensional temperature  field T(r, z, r).  Applying solution (1.8) for 

the case o f a h ,  a R --- o, (Bib, Bin -} ,o), we arrive at 

- , - f r J  0 ( p r )  v ( r ,  s )  - d r .  (1.8) 
ps sh ['~KaP 2 + s / a  z 0 

In this case, the inverse Hankel transformation for solution (1.8) is as follows 

--~ n~ "r~ (pnr) TH (P,, z,  s) , H - l  ['TH ( p , g ,  $)]= T (r, z, s)= 2 ' 
=1 J l  (Pn R) 

(1.8a) 

where pn R =/a n are the roots of the equation Jo(lz n) = O. 
Using the inverse Laplace transform, solution (1 .8 ) fo r  the inverse transform T(r, z, r) may be written as 

r(r, 3)- r0 =hn=1 

x - -  0 o i~ xJ  o 
Oz - ~  0 

where Oo(v/r) is the theta-function [6, 22 ]. 

If the boundary  conditions are set in discontinuity form 

( t t n R )  [ T o -  T v ( x ,  3 - ~ ) ] d x d ~ ,  
(1.9) 

~ ( r ,  z s ) l , =  0 To ' $ 

7". 
T v ( r ,  s ) - -  " r 1 > r > r  0; S ' 
O, r l < r < R  and 0 - < r < r  0 , 

(1.10) 

solution (1.9) is as follows 

O0 

r (r ,  z ,  v) - T 0 =  az ~, 
h n = l  

 oxpl ) o • 

0 (~-~1" ah-~) 2 rl (fi R) • - - 0  0 tn f x J 0  n [T O - T v ( X ,  z - ~ ) ] d x d ~ .  (1.11) 
Oz ~ r 0 

At R --, oo from (1.11) we obtain a solution for an infinite orthotropic plate under  initial conditions (1.2)" 

- -  0 0 
Oz 

:1 r l I lrx /n f x exp - I o 
r 0 

IT 0 - T  v ( x ,  r - ~ ) l d x d ~ .  
(1.12) 
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Fig. 2. Idealized physical model of semi-infinite body with a circular heat 

source  on  its sur face  (z -- 0, 0 -< r < r l ) :  1) T(r, 0, T) = TO, (z = O, 
r 1 < r < o0; 2) T(r, O, Q = 7`#, O, (z = 0, 0 _< r < rl) .  

Solution (1.12) for the Laplace transform TI (r, z, s) is written in the form (s is the Laplace t ransformation 

parameter):  

TI (r, z ,  s) TO = 7 PJO (pr) - -  f xJ 0 (px) v (x,  s) - dxdp. (1.13) 

At h ~ ~ from (1.13) we obtain a two-dimensional unsteady solution T2(r, z, s) = lira Tl(r, z, s) for a 

semi-infinite orthotropic body under  initial (1.2) and boundary  (1.10) conditions h-,  

- ~ =  Pdo(Pr) exp - ~  x/S+ arP 2 f xJ O(px) v(X,  s ) -  dxdp. (1.14) 
s 0 ~ r 0 

Applying inverse Laplace transformation to (1.14), we arrive at 

7" 2 ( r ,  z ,  ~) - r o = 
7, 

4 V ~ a r . ~ a z  ~ 1 0 ~ exp 
r2 z2 1 

4ar ~ 4"-~r ~ 
• 

• f x e x p  - i0 rx [T v ( x ,  ~ - ~ ) -  T O]dxd~. 
ro 

(1.15) 

If the inner  radius ro of the circular region tends to zero (r 0 --, 0), we obtain the following two-dimensional  

unsteady solution from (1.15) for the semiinfinite orthotropic body with initial (1.2) and boundary ( l .  1 O) conditions 

T 2 ( r ,  z ,  l - ) -  T 0 -  

at ro = 0 (see Fig. 2): 

4 x/-~a z a r o - ~  exp 

x f x e x p  - i0 rx [T v ( x ,  z - ~ ) -  T O]dxd~. 
0 

Assume that the excess temperature  in the circular region (0 _< r < rl)  over the body surface (z = 0) is 

constant,  i.e., Tv(r, T) - T o = T c - T o = const (T o ~ Tc). Then it is easy to obtain an expression for the temperature  

difference T2(r, z, ~) - T o in the form 

821 



T 2 ( r ,  ~, ~ ) -  T o 

T c - 7" 0 
' { / = "2 fo JO x Jl  (x) exp - x erfc 

r i 2 V a t  

+ e x p  _,-v~-2~x erfc ~ +  a'g~-dx ax. 
r, 2 r, ) 

At r = 0 we obtain a solution for T2(0, z, r) on the axis z >__ 0: 

T 2 ( r ,  z ,  "r)-- T c 12-~azr) VII I z--~aKa)12 rl <( = e r r  + 2 erfc - - +  1 + 
1 + rt avert T O - T c 

r I 

rl ) 

The  result of solving Problem I can be used for the development of nondestructive methods of determinat ion 

of the thermophysical  characteristics of various materials [1, 6, 24, 25 ]. 

Problem 2. It is necessary to solve differential heat conduction Eq. (1.1) for a finite cyl inder  under  initial 

(1.2) and boundary  (1.4)-(1.6) conditions. Instead of condition (1.3) on the surface z -- 0 we have the following 

boundary condition 

o r  ( r ,  z ,  T) I = aT ( r ,  O, r) = _ ~ q  r ,  r (2.1) 
Oz ] z=O Oz x z ' 

(0 -< r < R, z = 0, r > 0), where q(r, ~) is the heat-flux densi ty on the surface (see Fig. 1 on prescribing condition 

(2.1) instead of (1.3)). 

A solut ion of Prob lem 2 for a f ini te or thotropic  cy l inder  obta ined  with the aid of Laplace-Hankel  

transformations has the following form: 

O H (p ,  Z, S)----'TH(P, Z, S) 
ToRJ 1 (pR) _ 1: r j  0 (pr) ~ (r , s) dr 

d 

ps 0 2 z X/KaP 2 + s / a  z 
X 

+ a h / 2 z S h  [ '~Kap2+ s / a  z ( h -  z)] 

+ ah /2  z ch [~lKap2 + s / a  z h] 

We now prescribe boundary  conditions (2.1) on the surface (z --0) as 

(2.2) 

OT (r , z ,  s)] 

Oz z=O 0 

at r I > r > r 0 ;  

at r I < r < R and 0 _< r < r 0 , 

(2.3) 

the heat-flux density q(r, r) = q(T) (r is time): 

qH (P,  s) = ~ (s) [r iJ  1 (Prl) _ r0Jl (Pr0) l ' 
P 

(2.4) 

m 

z, 1(2 (01 (2 (s) .(2.5) 
L I q ( Q I =  2 2 = 2 2 = ~ ( s ) '  

n ( r  l - r 0 )  n ( r  t - r 0 )  

where Q(r) is the absorbed thermal energy from an annular  heat source. If r 0 --, 0, then formulas (2.4) and (2.5) 

can be represented in the form 
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rl Q ( s )  Jl  ( p r l ) ,  q H ( P ,  S) = ~ (S) p / 1  (Prl) = :triP 

where 

(s) = Q ( s )  (2.6) 
2 

Assume that the initial temperature distribution inside the body is constant,  TO -- const. In (2.6), Q(s) = 

L[Q(~) ] is the absorbed thermal energy from an annular  heater  in the Laplace transform. 

Using Hankel  t ransform (1) for the 6-function in the case of r o < R c < r I < R ,  we obtain a value for 

~n(p, s) 

R rl 
-qH (P , s) = f rJ 0 (,or) ~ ( r ,  s) 6 (r -- Rc) dr = f rJ 0 (pr) ~ ( r ,  s) 6 (r - Rc) dr = 

o r o 

l 

= nc Jo (pat) -4 (no s) = Q (s) So (pnc) (2.7) 
' 2~ ' 

where 
m 

(R c s) = Q (s) (2.8) 
' 2nR  c " 

In (2.7) and (2.8) heat is t ransferred across a circumference with radius r = R e < R on the surface z = 0 

of a finite orthotropic cyl inder  with a linear heat-flux density (2.8). The remaining surface z = 0, r<  R and r 

[Rc, R c + e ] is heat  insulated. In (2.7) and (2.8), Q(s) = L[Q(~  ] is the Laplace transform for the absorbed energy 

of a linear source when its length is 2Rdr. 

At  R c -~ 0 from (2.10) we obtain a value of qn(P, s) on the boundary surface z = 0, r < R and r ~ [0, 

0 + e ] for a point heat source at the coordinate origin (r = z = 0): 

qH (P s) = Q (s) (2.9) 
' 2 ~  ' 

where Q(r) -- L -1 [Q(s) ] is the thermal energy of the point heat source. 

We obtain corresponding solutions of (2.2) for the interesting cases qH(P, s) by using formulas (2.4), (2.5), 

(2.7), and (2.9). 

Applying solution (2.2) for the case of ah, a k - ~  0% we arrive at 

ToRJ  z (pR)  f rJO (pr) -~ (r , s) dr  sh (h - z) X/s + arPZ 
o ~ (2.1o) ~H (P, ~, s ) =  ~ (p, ~, s) 

ps b z X l s + a r P  2 ch [~a r 
The  inverse Hankel transform for solution (2.10) can be obtained by formula ( l .8a) .  

A solution for the inverse transform (2.10) L[O(r, z, s) ] = O(r, z, 3) is obtained in the following form 

O H ( r ,  z ,  r) = T H (p ,  z ,  r) - T O = ~zz n=l • 
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where 01 ((h - z)/h 21 i~az~/h 2) is the theta-function [261. 

If boundary  condition (2.1) on the surface z = 0 (R < r _< 0) of a finite orthotropic cyl inder  is prescribed 

in the form of (2.3), then solution (2.11) can be represented as 

a, f exp - / . t  n x T ( r ,  z ,  lr) - 7"0 =--7_ 2 
,~=l 11(u, , )  o 

x (2.12) x 01 i~ XJo n q (x, ~ - ~) dxd~, 

where/z n are the roots of the equation Jo(un) = O. 
At R --, 0% we obtain from (2.12) a solution for an infinite orthotropic plate under  initial conditions (2.3) 

and T(r, h, 3) = TO: 

lira IT ( r ,  z ,  0 - To I = 7'i ( r ,  z ,  3) - 7"0 = ~ 0 ~- exp - x 

x 0 1  h - z  /n: f x e x p  io rx (2.13) - q ( x ,  �9 - ~) d x d ~ .  
ro 

Solution (2.13) for the Laplace transform Tj (r, z, s) is written in the form 

- 1 
sh _ ~/~ + a,,o2 

7"0 1 7 PJo (pr) rl 
z s) - - j f xd o (px) -~ (x ,  s) dxdp. (2.14) (r 

' I • 

At h-~ ~ from (2.14) we have the following two-dimensional nonstat ionary solution for a semiinfinite 

orthotropic cyl inder  under  initial (1.2) and boundary conditions (2.3): 

lira [Tl (r, z ,  s ) -  7"o/sl = T2 (r, z ,  s ) -  To/s = 

[z ]rl 
= 1 PJO (pr) exp ~/s + arP 2 f xJ 0 (px) ~ (x, s) dxdp. (2.15) 

b~ o ~/S + arP 2 ~ r o 

Applying the inverse Laplace transformation to (2.15), we obtain the two-dimensional temperature  field 

T2(r, z, 3) for a semi-infinite orthotropic cylinder under  initial (1.2) and boundary (2.3) conditions: 

T2(r z r ) T O  1 rf 1~ [ [r~r z-~z]--~l , , - = exp - + • 
2 v~ bza r o ~"  ~ 

X f x e x p  - i0 rx q (x ,  r - ~ ) d x d ~ .  
ro 

(2.16) 

Solutions and investigations of two-dimensional unsteady heat conduction Problem 2 at q(r, 3) = q(T) over 

the surface z = 0 of different bodies have been carried out in [1-5, 7-18, 20-22, 24, 25 l. 

In 119 ], an investigation is made of heat transfer in a semiinfinite (in a thermal sense) body when the 

specific heat flux q(r, 3) over the body surface (z -- 0) in the circular region (r = r0) is equivalent to q(r, r) = 
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___•_l•l - -  r 

2 

z(a~, Xz) 
Fig. 3. Idealized physical model of semi-infinite orthotropic body having a 

source with a heat flux of linear concentration at the periphery (r ~ Rc, z = 

0):  1 ) q H ( P ,  s) = Q(s)/2~JO(p, Rc), r = Rc; 2) Or(r,O, 0/Oz-- 0, 
r ~ [Re, Rc + e 1. 

pW0(r) exp ( - r 2 / r ~ ) ,  where p is the absorptivity, W0(r) is the power of the laser source and r 0 is the radius of a 
laser beam. 

In the present work, Problem 2 (solutions (2.15) and (2.16)) is considered for the following cases. 

I. The heat source q(x, r) = L - !  ~(x ,  s) ] is located at the point (r = z = 0). Then according to (2.9): 

~H (p s) = 0 (s) 
' 2.7/7 

- 7 where Q(s) = L[Q(~) ] -- exp ( - s r )Q(r )dr .  Solution (2.15) is written in the form 
0 

0 2 (r ,  z ,  s ) = - T 2  (r ,  z ,  s) 

I 

r o _ O (s)  

s 2~2z f l ~ a  
X X  

exp ( -  ~/zZKa + r z ~s/V~ar ) ] .  

~/zz/G + r ~ 

Dete rmin ing  the t empera tu re s  on the surface  z = 0 at  r -- Rt,  r = R 2 and  the i r  d i f fe rences  

~l(s) - ~2(s) = T2(RI, 0, s) - T2(R2, 0, s), it is easy to derive a formula for thermal diffusivity at: 

(R2-  hi) 2 (0 

4~ ~ (0  

where ( R  2 - R 1) is the distance between temperature-sensitive measuring elements on the boundary surface (z = 

0) of a semi-infinite orthotropic body; F1 (r) and F2(r) are determined by the following integrals: 

F z (~) = f (r - ~ ) 0 1  (s e) O z (~ - ~) d$ ,  
0 

T 

F 1 (z') = f l } 01 (~) 0 2 (l -- ~) d~al .  
0 ~ / r - /  0 

Under steady-state conditions (3 --, oo) it is easy to derive a formula to calculate the complex ~zV~a = 
,lzd-~a: 
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where AT2(Qo) I T2(RI,  O, Qo) - T2(R2, 0, oa) ,~ 01(oo) - 02(oo ) is the stationary value (~ -* ,o) of the temperature 
difference at points r ~ R I ,  z = 0 and r = R 2 ,  z = O;  Q o  ~ const is the constant energy source at the point r = z = O. 

For an isotropic body Ka " Ka "~ 1, ar = az = a, ;tr = 2z " 2 .  

II. The heat source q(x ,  7:) = L - 1 [ q ( x ,  s) l is on the circumference (r -- Rc, z ~ O) (Fig. 3). 

For this case, solution (2.15) is written as 

- [ ] /  r2 (r - ro/S = Q (s) f p.ro (pr) Jo (pR ) exp - + + a,p 
' ' 2~rbz 0 

The represented physicomathematical models of unsteady heat conduction with discontinuous boundary 

conditions on the surface of the tested object allow the development of numerous methods of nondestructive testing 

of thermophysical properties of various materials. 
Local heat fluxes can be formed with the aid both of conventional electric heaters and lasers and electron- 

beam energy sources. The main difficulty that is encountered in implementation of theoreticophysical measurement 

by the described methods is that of ensuring precise measurement of surface temperatures at some point or in a 
definite region on the surface. Recent advances in the design of heat imagers make it possible to measure sufficiently 

precisely the temperature over the surface by noncontact methods. 
The authors believe that the methods of nondestructive testing of thermophysical properties based on the 

above or similar solutions of the heat conduction equation with discontinuous boundary conditions are most 

promising and can find application in the design of thermophysical equipment. 
Modern microprocessor units equipped with analog-digital converters allow one to automate easily all meas- 

urements and calculations. 

N O T A T I O N  

s, parameter of the integral Laplace transformation; p, parameter of the integral Hankel transformation; 

at, az, 2r, 2z, Ka, thermal diffusivity and thermal conductivity along cylindrical coordinates; ah, aR,  heat transfer 

coefficients on the end and lateral cylinder faces; br, bz, thermal activity; Bib, BiR, Biot number; Jo(pr) ,  J1 (pr), 

Bessel functions of the zeroth and first order; Io(x) ,  modified first-kind zeroth-order Bessel function; wo(T), 

intensity (density) of laser radiation (W/m3); p, absorptivity of an opaque body; Ka = ar /az;  KZ -Zr/2z ,  parameter 

characterizing the ratios of thermal diffusivities and thermal conductivities in the corresponding directions relative 

to the cylindrical coordinates r, z; R1, R2, inner and outer radii of the circular heat source; q(r, T), specific heat 

flux at z = 0; 01(r, z, 3) = Tl(r, z, 3) - T 0, 02(r, z, 3) = T2(r, z, ~) - T 0, excess temperatures; err cx,  probability 

integral. 
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